Practical Pulse-Shaping Waveforms for Reduced-Cyclic-Prefix OTFS

P. Raviteja, Yi Hong, Emanuele Viterbo, Ezio Biglieri
Date Submitted: 8 September 2018
Date Published: 10 September 2018

The final published version of this article is available at:
DOI: 10.1109/TVT.2018.2878891

Updated information and services can be found at:

These include:

Subject Classification Vehicular Technology > Mobile Communications

Keywords OTFS, circulant matrices, delay--Doppler domain.; Modulation and coding;

Submitting Author's Comments Submitted to IEEE Transactions on Vehicular Technology

Comments You can respond to this article at:
https://engine.lib.uwaterloo.ca/ojs-2.2/index.php/pptvt/comment/add/719/0

Copyright ©2018 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works
must be obtained from the IEEE.
Practical Pulse-Shaping Waveforms for Reduced-Cyclic-Prefix OTFS
P. Raviteja, Yi Hong, Emanuele Viterbo, and Ezio Biglieri

Abstract—In this paper we model $M \times N$ orthogonal time frequency space modulation (OTFS) over a P-path doubly-dispersive channel with delays less than τ_{max} and Doppler shifts in the range $[\nu_{\text{min}}, \nu_{\text{max}}]$. We first derive in a simple matrix form the input-output relation in the delay–Doppler domain for practical (e.g., rectangular) pulse-shaping waveforms, next generalize it to arbitrary waveforms. This relation extends the original OTFS input–output approach, which assumes ideal pulse-shaping waveforms that are bi-orthogonal in both time and frequency. We show that the OTFS input–output relation has a simple sparse structure that enables one to use low-complexity detection algorithms. Different from previous work, only a single cyclic prefix (CP) is added at the end of the OTFS frame, significantly reducing the overhead, without incurring any penalty from the loss of bi-orthogonality of the pulse-shaping waveforms.

Finally, we compare the OTFS performance with different pulse-shaping waveforms, and show that the reduction of out-of-band power may introduce nonuniform channel gains for the transmitted symbols, thus impairing the overall error performance.

Index Terms—OTFS, circulant matrices, delay–Doppler domain.

I. INTRODUCTION

ORTHOGONAL time frequency space (OTFS) modulation has been recently proposed in [1], [3] to efficiently address the high Doppler sensitivity problem occurring in orthogonal frequency division multiplexing (OFDM) modulation. The key idea of OTFS is to transmit the information symbols in the delay–Doppler plane rather than in the time–frequency plane as with OFDM. The delay–Doppler plane captures the delays and Doppler shifts of the physical paths present in the wireless channel, and allows a sparse representation of the channel.

While [1], [3] present an overall system level description of OTFS, exact implementation details were not provided. Moreover, the relations in [1], [3] assume ideal pulse-shaping waveforms that satisfy orthogonality conditions in both time and frequency, which is not practically feasible due to Heisenberg’s uncertainty principle. Several other works ([5]–[9] and references therein) propose an OFDM-based OTFS system, where non-ideal rectangular pulse-shaping waveforms and cyclic prefix (CP) for every OFDM symbol in OTFS frame are considered. However, it is non-trivial to extend their input–output relations to the case of arbitrary practical OTFS waveforms.

On the other hand, many works focused on the design of waveforms that are close to ideal waveforms in the context of pulse-shaped OFDM (PS-OFDM) [10]–[12]. The objective of these works is to analyze and reduce interferences, i.e., inter-carrier and inter-symbol interferences, that occur in PS-OFDM due to non-orthogonality of waveforms. However, in this paper, we show that the channel relations in OTFS for practical non-orthogonal waveforms follow a simple sparse structure, enabling the use of low-complexity detection algorithms.

Inspired by a simple matrix representation of OFDM systems using circulant-matrix decomposition, in this work, we first express the OTFS effective channel transfer matrix using two matrix decompositions, one for delay and another for Doppler components. Next, we simplify the OTFS effective channel by applying some properties of block circulant matrices, and show that the effective channel transfer matrix has a simple sparse structure, with a sparsity level depending on the number of paths in the channel. Thanks to the sparse matrix structure, a low-complexity detection algorithm can be used at the receiver. Moreover, we show how our approach can be easily extended to arbitrary practical pulse-shaping waveforms that are applied to the time domain signal. Further, we compare the OTFS performance of rectangular and prolate spheroidal waveforms, and illustrate a tradeoff between out-of-band radiation and BER performance.

We use the following notation throughout the paper. We let a, \mathbf{a}, and \mathbf{A} represent scalar, vector, and matrix, respectively. The terms $a(n)$ and $\mathbf{A}(m,n)$ represent the n^{th} element of a and $(m,n)^{th}$ element of \mathbf{A}. Notations \mathbf{A}^H and \mathbf{A}^n represent the Hermitian transpose and the n^{th} power of \mathbf{A}. Notation $\mathbb{C}^{M \times N}$ denotes the set of $M \times N$ dimensional matrices with each entry from the complex plane. Let \otimes be the Kronecker product and $\mathbf{A} = \text{diag}([\mathbf{A}_0, \cdots, \mathbf{A}_{N-1}]) \in \mathbb{C}^{MN \times MN}$ the block diagonal matrix with $\{\mathbf{A}_0, \cdots, \mathbf{A}_{N-1}\} \in \mathbb{C}^{M \times M}$ as diagonal blocks. Finally, we let $\mathbf{F}_n = \{\frac{1}{\sqrt{n}}e^{\frac{2\pi jk l}{n}}\}_{k,l=0}^{n-1}$ and \mathbf{F}_n^H be the n-point DFT and the IDFT matrices, and the term \mathbf{I}_M be a M-dimensional identity matrix.

II. SYSTEM MODEL

In this section, we describe the OTFS system using matrix notations. We assume that the total duration of the transmitted signal frame is NT and the sampling interval is T/M. Moreover, we let $g_{\text{tx}}(t)$ and $g_{\text{rx}}(t)$ denote a pulse of duration $[0, T]$ repeated N times in the frame.
A. Transmitter

Let $X \in \mathbb{C}^{M \times N}$ denote the two-dimensional information symbols transmitted in the delay–Doppler plane. To convert these symbols to time–frequency signals, Inverse Symplectic Fast Fourier Transform (ISFFT) precoding is applied (this amounts to an M-point FFT of the columns and an N-point IFFT of the rows of X). The “Heisenberg transform modulator” generates the time domain signal using an M-point IFFT along with the pulse-shaping waveform $g_{tx}(t)$. The transmitted signal can be written as

$$S = G_{tx} F_H(M F_M X F_H N) = G_{tx} X F_H N$$

where the diagonal matrix G_{tx} has the samples of $g_{tx}(t)$ as its entries: $G_{tx} = \text{diag}(g_{tx}(0), g_{tx}(T/M), \ldots, g_{tx}((M - 1)T/M)) \in \mathbb{C}^{M \times M}$ (for rectangular waveforms, G_{tx} reduces to the identity matrix I_M). Column-wise vectorization of the $M \times N$ matrix S in (1) yields the $MN \times 1$ vector

$$s = \text{vec}(S) = (F_H N \otimes G_{tx})x$$

where $x = \text{vec}(X)$ and denoting by \otimes the Hadamard product. We assume that a cyclic prefix (CP) of length $L - 1$ (see after (5)) is appended to s before transmission.

Note that we assume only one CP for the entire OTFS frame, whereas the other works [5]-[9] considered N CP’s for one OTFS frame. This design assumption considerably increases the spectral efficiency of overall system, particularly for the cases where the value of N is large, (e.g., 64, 128) or the CP overhead is large (e.g., 802.11ac requires 25% CP).

B. Channel

After parallel-to-serial and digital-to-analog conversion, denoting by $s(t)$ the transmitted signal, the received signal $r(t)$ can be expressed in the form [1], [2]

$$r(t) = \int\int h(\tau, \nu)s(t - \tau)e^{j2\pi\nu(t - \tau)} d\tau d\nu + w(t).$$

Since typically there is only a small number of reflectors in the channel with associated delays and Doppler shifts, very few parameters are often needed to model the channel in the delay–Doppler domain. Given the sparsity of the channel representation, it is convenient to express the response $h(\tau, \nu)$ in the form

$$h(\tau, \nu) = \sum_{i=1}^{P} h_i \delta(\tau - \tau_i) \delta(\nu - \nu_i)$$

where $\delta(\cdot)$ is the Dirac delta function, P is the number of propagation paths, and h_i, τ_i, and ν_i denote the complex path gain, delay, and Doppler shift (or frequency) associated with the i-th path, respectively. The delay and Doppler-shift taps for i-th path are given by

$$\tau_i = \frac{l_i}{M \Delta f}, \nu_i = \frac{k_i}{NT}$$

For ease of derivations, we assume the delay and Doppler shifts as integer multiples of $\frac{1}{M \Delta f}$ and $\frac{1}{NT}$, respectively, i.e., we assume l_i, k_i as integers. However, fractional delay and Doppler shifts can also be handled using the techniques discussed in [4], [16] by adding virtual integer taps in the delay–Doppler channel. Hence, the results derived in this paper can be straightforwardly extend to the fractional delay and Doppler shifts.

Here, NT and $M \Delta f$ denote the total duration and bandwidth of the transmitted signal frame, respectively. Throughout the paper, we have considered $T \Delta f = 1$, i.e., OTFS is critically sampled for all pulse-shaping waveforms. We assume that the maximum delay of the channel is $\tau_{\text{max}} = (L - 1)T/M$, i.e., $\tau_{\text{max}}(l_i) = L - 1$. Moreover, $l_i < M$ and $k_i < N$ (i.e., the channel is underspread: for example, typical values of l_i and k_i in LTE channels are less than 10% of M and N, respectively). The received signal $y(t)$ is sampled at a rate $f_s = M \Delta f = M/T$ and, after discarding the CP, a vector $r = \{r(n)\}_{n=0}^{MN-1}$ is formed, whose entries, from (3) and (4), are the samples

$$r(n) = \sum_{i=1}^{P} h_i e^{j2\pi \frac{l_i(n-\nu_i)}{MN}} s(n - l_i) + w(n)$$

where $[\cdot]_n$ denotes mod-n operation. We write (6) in vector form as

$$r = Hs + w,$$

where H is the $MN \times MN$ matrix

$$H = \sum_{i=1}^{P} h_i \Pi \Delta_{k_i},$$

with Π the permutation matrix (forward cyclic shift),

$$\Pi = \begin{bmatrix}
0 & \cdots & 0 & 1 \\
1 & \ddots & \ddots & \ddots \\
\vdots & \ddots & \ddots & \ddots \\
0 & \cdots & 1 & 0
\end{bmatrix}_{MN \times MN}$$

and Δ is the $MN \times MN$ diagonal matrix

$$\Delta = \text{diag}[z^0, z^1, \ldots, z^{MN-1}]$$

with $z = e^{j2\pi l_i/NT}$. Here, the matrices Π and Δ model the delays and the Doppler shifts in (3), respectively. Each path introduces an l_i-step cyclic shift of the transmitted signal vector s, modeled by Δ_{k_i}, and modulates it with a carrier at frequency k_i, modeled by Δ_{k_i}.

C. Receiver

At the receiver, we invert the transmitter operations to transform the received signal samples r into the time–frequency domain symbols $R = \text{vec}^{-1}(r)$ (the vector elements are folded back into a matrix), next into the delay–Doppler domain symbols $Y = F_H(M F_M G_{rx} R) F_N$. To do this, we apply an M-point FFT followed by an SFFT. Here, $G_{rx} \in \mathbb{C}^{M \times M}$ represents the filter operating at the receiver and using the pulse-shaping waveform $g_{rx}(t)$. We can write $G_{rx} = \text{diag}[g_{rx}(0), g_{rx}(T/M), \ldots, g_{rx}((M - 1)T/M)]$.

In vectorized form the received signal in the delay–Doppler domain can be written, after substituting (2) in (7), as

$$y = (F_N \otimes G_{rx}) r$$
\(T^{(i)}(p, q) = \begin{cases} e^{-j2\pi \frac{q}{M} [m-l_i]_M}, & \text{if } q = [m-l_i]_M + M[n-k_i]_N \text{ and } m < l_i \\ z^{k_i([m-l_i]_M)}, & \text{if } q = [m-l_i]_M + M[n-k_i]_N \text{ and } m \geq l_i \\ 0, & \text{otherwise} \end{cases} \) (12)

The above can also be expressed in the form
\[
a^{(i,j)} = \frac{1}{\sqrt{N}} F_N \left[D_0(i,j), \cdots, D_{N-1}(i,j) \right]^T \]
(19)

Proof: See [13] for the details. The proof of (18) is based on the fact that the \(N \times N \) submatrices of \(A \) obtained by taking a row and a column every \(M \) are circulant. There are \(M^2 \) distinct such circulant submatrices.

Theorem 1: The effective channel matrix \(\mathbf{H}_{\text{eff}} \) for rectangular waveforms can be written as
\[
\mathbf{H}_{\text{eff}}^\text{rect} = \sum_{i=1}^{P} h_i T^{(i)},
\]
(20)

where the entry \((p, q) \) is defined in \(\text{(p, q)} \leq MN - 1 \), \(0 \leq q \leq MN - 1 \), and \(\mathbf{T}^{(i)} \) is shown in (12). In (12), the values of \(n \) and \(m \) can be computed from \(n = \lfloor p/M \rfloor \) and \(m = p - nM \). Notice that \(\mathbf{H}_{\text{eff}}^\text{rect} \) has only \(P \) nonzero entries in each row and column. The row and column entries describe the effect of information symbols on a particular received signal.

Proof: From (11), since \((F_N \otimes I_M) \) is a unitary matrix, the effective channel matrix can be written as
\[
\mathbf{H}_{\text{eff}}^\text{rect} = \sum_{i=1}^{P} h_i \left[(F_N \otimes I_M) \Pi^l(i) (F_N^H \otimes I_M) \right] \cdot \Pi^t(i).
\]
(21)

(a) Evaluation of \(\Pi^t(i) \) — Since \(\Pi \) is a permutation matrix, \(\Pi^t(i) \) is also a permutation matrix with \(1s \) in \((p, [p-l_i]_M)^{th} \) entries, for \(0 \leq p \leq MN - 1 \), and zeros elsewhere. Further, \(\Pi^t(i) \) is a circulant matrix which can also be seen as block-circulant with the form (14), in which \(\mathbf{A}_n = \Pi^t(i) \Pi^l(i) \) for \(n = 0, \cdots, N-1 \). Therefore, application of Lemma 1 shows that \(\Pi^t(i) \) has the block-diagonal form (17), with \(N \times N \) diagonal blocks denoted by \(\mathbf{P}_0^{(i)}, \cdots, \mathbf{P}_{N-1}^{(i)} \).

Since \(l_i < M \), \(\Pi_0^{(i)} \cdots, \Pi_{N-1}^{(i)} \) are all-zero matrices (0), and \(\Pi_0^{(i)} \) has 1s in rows from \(l_i \) to \(M-1 \) and \(0 \) to \(l_i-1 \), respectively and all zeros in the remaining rows. Therefore, applying (18) in Lemma 1, and considering that the vector \(\mathbf{a}(u,v) \) has only one nonzero element (which equals to 1), we obtain
\[
\mathbf{P}_n^{(i)}(u,v) = \begin{cases} 1 & \text{if } u \geq l_i \text{ and } v = u - l_i \\ e^{-j2\pi \frac{u - v}{M}} & \text{if } u < l_i \text{ and } v = [u - l_i]_M \\ 0 & \text{otherwise} \end{cases}
\]
(22)

for \(0 \leq n \leq N-1 \) and \(0 \leq u, v \leq N-1 \). Here, we obtain the values 1 and \(e^{-j2\pi \frac{v}{M}} \) by applying the DFT to vectors \(\mathbf{a} = [1, 0, \cdots, 0]^T \) and its cyclic shifts by \(n \), respectively.
Finally, the \((p,q)\)th entry of \(P^{(i)}\) for \(0 \leq p,q \leq MN - 1\) is
\[
P^{(i)}(p,q) = \begin{cases}
1 & \text{if } m \geq l_i, q = [m - l_i]_M + nM \\
e^{-j2\pi \frac{p}{M}} & \text{if } m < l_i, q = [m - l_i]_M + nM \\
0 & \text{otherwise}
\end{cases}
\] (23)

where, \(n = \left\lfloor \frac{p}{M} \right\rfloor\) and \(m = p - nM\). The values in (23) are obtained from (22) with the substitutions \(p = nM + u, q = nM + v\) and \(u = m\).

(b) Evaluation of \(Q^{(i)}\) - Observing that the diagonal matrix \(\Delta^{k_i}\) can be viewed as a block-diagonal matrix, and using (16), we can easily see that \(Q^{(i)}\) is a block-circulant matrix of the form (14).

Since the \(M \times M\) blocks \(\Delta^{k_i}_0, \ldots, \Delta^{k_i}_{N-1}\) are diagonal, from (19) we have
\[
Q^{(i)}_{0,i}(u,v) = 0, \text{ for } u \neq v, \ 0 \leq n \leq N - 1
\] (24)

and the diagonal entries of \(Q^{(i)}_0, \ldots, Q^{(i)}_{N-1}\) are related to the elements of \(\Delta^{(i)}\) as
\[
\begin{align*}
Q^{(i)}_0(u,u) &= \left(\frac{1}{\sqrt{N}}\right) F_N \left[\Delta^{k_i}_0(u,u), \ldots, \Delta^{k_i}_{N-1}(u,u) \right]^T \\
&= \left(\frac{1}{\sqrt{N}}\right) F_N \left[z^{k_i u}, \ldots, z^{k_i (M(N-1)+u)} \right]^T \\
&= z^{k_i u}[1, 0, \ldots, 0]^T
\end{align*}
\] (25)

Therefore, we can write \(Q^{(i)}_{0,i}\) as
\[
Q^{(i)}_{0,i}(u,v) = \begin{cases}
z^{k_i u} & \text{if } n = k_i \text{ and } u = v \\
0 & \text{otherwise}
\end{cases}
\] (26)

for \(0 \leq n \leq N - 1\) and \(0 \leq u, v \leq N - 1\). Further, the \((p,q)\)th entry of \(Q^{(i)}\), for \(0 \leq p,q \leq MN - 1\), is equal to
\[
Q^{(i)}(p,q) = \begin{cases}
z^{k_i m'} & \text{if } p = m' + M[n' + k_i] \\
0 & \text{otherwise}
\end{cases}
\] (27)

where, \(n' = \left\lfloor \frac{q}{M} \right\rfloor\) and \(m' = q - n'M\).

Now, the \((p,q)\)th entry of \(T^{(i)} = P^{(i)}Q^{(i)}\), for \(0 \leq p,q \leq MN - 1\), can be written as
\[
T^{(i)}(p,q) = \sum_{e=0}^{MN-1} P^{(i)}(p,e)Q^{(i)}(e,q)
\] (28)

From (23), (27), and (28), we can see that \(T^{(i)}(p,q)\) has nonzero value only for
\[
[m - l_i]_M + nM = m' + M[n' + k_i]_N,
\] (29)

which implies \(m' = [m - l_i]_M\) and \(n' = [n - k_i]_N\), or \(q = [m - l_i]_M + M[n - k_i]_N\). Moreover, the value of \(T^{(i)}(p,q)\) depends on \(m\) and it is equal to \(e^{-j2\pi m/M}z^{k_i(\lfloor m-l_i\rfloor M)}\) and \(z^{k_i(\lfloor m-l_i\rfloor M)}\) for \(m < l_i\) and \(m \geq l_i\), respectively.

Finally, from (21) and (12), we see that there exists only one nonzero element in each row of \(T^{(i)}\). Further, based on the assumption that in different paths at least one of the \(k_i\) or \(l_i\) is also different, exactly \(P\) nonzero elements exist in each row and column of \(H_{\text{eff}}^{\text{ext}}\).

Example: Let us consider \(M = 2, N = 2\), and examine \(T^{(i)}\) in the following four channel cases.
1. \(k_1 = 0, l_1 = 0\): In this case, \(P^{(1)}\) and \(Q^{(1)}\) becomes \(I_4\) that leads \(T^{(1)}\) to \(I_4\). That is, the channel with zero delay and Doppler corresponds to a narrowband channel in OTFS.
2. \(k_2 = 0, l_2 = 1\): In this case, \(Q^{(2)}\) becomes \(I_4\) and
\[
P^{(2)} = T^{(2)} = \begin{bmatrix} 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & e^{-j2\pi \frac{1}{4}} \\
0 & 0 & 1 & 0 \end{bmatrix}
\]

That is, channel with one delay circularly shifts the elements in each column (delay dimension) of \(s\) with extra phase shifts.
3. \(k_3 = 1, l_3 = 0\): In this case, \(P^{(3)}\) becomes \(I_4\) and
\[
Q^{(3)} = T^{(3)} = \begin{bmatrix} 0 & 0 & 1 & 0 \\
0 & 0 & 0 & e^{-j2\pi \frac{1}{4}} \\
0 & e^{-j2\pi \frac{1}{4}} & 0 & 0 \\
1 & 0 & 0 & 0 \end{bmatrix}
\]

That is, channel with one Doppler circularly shifts the columns (Doppler dimension) of \(s\) with extra phase shifts.
4. \(k_4 = 1, l_4 = 1\): In this case,
\[
T^{(4)} = \begin{bmatrix} 0 & 0 & 0 & e^{-j2\pi \frac{3}{4}} \\
0 & 0 & 1 & 0 \\
0 & e^{-j2\pi \frac{3}{4}} & 0 & 0 \\
1 & 0 & 0 & 0 \end{bmatrix}
\]

That is, channel with both delay and Doppler circularly shifts the columns and elements in each column of \(s\).

Remark 1: From [1], [2], [16], the input–output relation for the ideal waveforms case can be written as a 2D convolution in the form
\[
Y(m,n) = \sum_{i=1}^{P} h_i X([m - l_i]_M, [n - k_i]_N)
\] (30)

Therefore, the effective channel matrix in Theorem 1 can be obtained from (30) by replacing \(h_i\) with \(h_i\alpha_i(m,n)\) ([17]), where the correction factor is given by
\[
\alpha_i(m,n) = \begin{cases}
e^{-j2\pi n/N}z^{k_i(\lfloor m-l_i\rfloor M)} & \text{if } m < l_i \\
z^{k_i(\lfloor m-l_i\rfloor M)} & \text{if } m \geq l_i \\
0 & \text{otherwise}
\end{cases}
\]

The extra phase shifts, \(\alpha_i(m,n)\), are caused by imperfect bi-orthogonality of the non-ideal waveforms. Note that sparsity of OTFS is not affected by the \(\alpha_i(m,n)\)'s, hence the complexity of any detection algorithm does not change, when practical waveforms are used.

Based on Theorem 1, we can provide a simplified input–output relation when the waveforms at the transmitter and receiver are arbitrary.

Theorem 2: The effective channel matrix, \(H_{\text{eff}}\) for the arbitrary waveforms can be written as
\[
H_{\text{eff}} = \sum_{i=1}^{P} h_i \left[(I_N \otimes G_{tx}) T^{(i)} (I_N \otimes G_{rx}) \right],
\] (31)
The result can be obtained by writing H_{eff} in (11) as

$$H_{\text{eff}} = (I_N \otimes G_{\text{rx}})(F_N \otimes I_M)H(F_N \otimes I_M)(I_N \otimes G_{\text{tx}})$$

$$= (I_N \otimes G_{\text{rx}})H_{\text{SS}}^\dagger(I_N \otimes G_{\text{tx}})$$

$$= (I_N \otimes G_{\text{rx}}) \left[\sum_{i=1}^{\nu_{\text{max}}} h_i T^{(i)} \right] (I_N \otimes G_{\text{tx}}) \tag{32}$$

Moreover, H_{eff} has also exactly P nonzero elements in each row as $(I_N \otimes G_{\text{rx}})$ and $(I_N \otimes G_{\text{tx}})$ are diagonal matrices.

A special case: Prolate spheroidal waveforms

Assume $g_{\text{tx}}(t)$ to be a prolate spheroidal waveform (PSW) [15]: this has a much lower out-of-band power than the rectangular waveform, which reduces the out-of-band interference of OFDM systems. It can be easily shown that an arbitrary $g_{\text{tx}}(t)$ does not affect the performance of maximum likelihood (ML) detection, since both signal and noise components are equally scaled. Therefore, we have selected a rectangular $g_{\text{tx}}(t)$.

Fig. 1 shows the bit error rate (BER) of OTFS vs. E_b/N_0 with rectangular and PSW. This figure also compares OTFS with CP-OFDM as a function of E_b/N_0, where E_b/N_0 takes into account the rate loss of CP-OFDM due to the use of CP overhead. The plot corresponds to the following parameters: carrier frequency $= 4$ GHz, subcarrier spacing $= 15$ KHz, $M = 512$, $N = 128$, maximum speed $= 120$ Kmph, and 4-QAM modulation. We use the Extended Vehicular A model [14] for the channel delay, and each delay tap has a single Doppler shift generated using Jakes’ formula $v_i = v_{\text{max}} \cos(\theta_i)$, where v_{max} is the maximum Doppler shift determined by the UE speed and θ_i is uniformly distributed over $[-\pi, \pi]$. For the detection of transmit symbols, we use the message-passing detector proposed in our earlier work [16], [17]. Note that both waveforms have similar detection complexity, as the sparsity of the effective channel matrix is same.

We can see from the figure that rectangular waveforms outperform by about 5 dB the PSW. This is due to the structure of the latter: here, some of the symbols (edge symbols, see (32)) experience lower channel gains, which degrades the overall performance, while with rectangular waveforms all symbols experience uniform channel gains. Hence, we see a trade-off between out-of-band power and error performance of the OTFS system. Moreover, OTFS with PSW can still be able to outperform OFDM in terms of diversity gain (the BER curve slope).

IV. CONCLUSION

We have analyzed the input–output relation of OTFS system for arbitrary pulse-shaping waveforms using a block-circulant matrix decomposition. We showed that the OTFS has a simple sparse input-output relation which enables the use of low-complexity detection algorithms. Simulation results, comparing the error performance of OTFS with different waveforms, showed a tradeoff between out-of-band radiation and BER.

REFERENCES

